Aquifex aeolicus tRNA (Gm18) methyltransferase has unique substrate specificity. TRNA recognition mechanism of the enzyme.
نویسندگان
چکیده
Transfer RNA (guanosine-2')-methyltransferase (Gm-methylase) catalyzes the transfer of a methyl group from S-adenosyl-l-methionine to 2'-OH of G18 in the D-loop of tRNA. Based on their mode of tRNA recognition, Gm-methylases can be divided into the following two types: type I having broad specificity toward the substrate tRNA, and type II that methylates only limited tRNA species. Protein synthesized by in vitro cell-free translation revealed that Gm-methylase encoded in the Aquifex aeolicus genome is a novel type II enzyme. Experiments with chimeric tRNAs and mini- and micro-helix RNAs showed that the recognition region of this enzyme is included within the D-arm structure of tRNALeu and that a bulge is essentially required. Variants of tRNALeu, tRNASer, and tRNAPhe revealed that a combination of certain base pairs in the D-stem is strongly recognized by the enzyme, that 4 bp in the D-stem enhance methyl acceptance activity, and that the Py16Py17G18G19 sequence is important for efficient methyl transfer. The methyl acceptance activities of all the A. aeolicus tRNA genes, which can be classified into 14 categories on the basis of their D-arm structure, were tested. The results clearly showed that the substrate recognition mechanism elucidated by the variant experiments was applicable to their native substrates.
منابع مشابه
(TrmD) from Aquifex aeolicus
Genes to Cells (2006) 11 , 1353–1365 Journal compilation © 2006 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd. 1353 DOI: 10.1111/j.1365-2443.2006.01022.x Blackwell Publishing Inc M lden, USA GTC enes to Cells 1356-9597 © Blackwell Publ shing Ltd ? 2006 1 Original Artic e tRNA specificity of Aquifex aeolicus TrmD H. Takeda e al. The substrate specificity of tRNA (m 1 G37) me...
متن کاملCrystal structure of the tRNA processing enzyme RNase PH from Aquifex aeolicus.
RNase PH is one of the exoribonucleases that catalyze the 3' end processing of tRNA in bacteria. RNase PH removes nucleotides following the CCA sequence of tRNA precursors by phosphorolysis and generates mature tRNAs with amino acid acceptor activity. In this study, we determined the crystal structure of Aquifex aeolicus RNase PH bound with a phosphate, a co-substrate, in the active site at 2.3...
متن کاملEnzymes assembled from Aquifex aeolicus and Escherichia coli leucyl-tRNA synthetases.
Aquifex aeolicus alphabeta-LeuRS is the only known heterodimeric LeuRS, while Escherichia coli LeuRS is a canonical monomeric enzyme. By using the genes encoding A. aeolicus and E. coli LeuRS as PCR templates, the genes encoding the alpha and beta subunits from A. aeolicus alphabeta-LeuRS and the equivalent amino- and carboxy-terminal parts of E. coli LeuRS (identified as alpha' and beta') were...
متن کاملRecognition of tRNALeu by Aquifex aeolicus leucyl-tRNA synthetase during the aminoacylation and editing steps
Recognition of tRNA by the cognate aminoacyl-tRNA synthetase during translation is crucial to ensure the correct expression of the genetic code. To understand tRNA(Leu) recognition sets and their evolution, the recognition of tRNA(Leu) by the leucyl-tRNA synthetase (LeuRS) from the primitive hyperthermophilic bacterium Aquifex aeolicus was studied by RNA probing and mutagenesis. The results sho...
متن کاملLeucyl-tRNA synthetase from the ancestral bacterium Aquifex aeolicus contains relics of synthetase evolution.
The editing reactions catalyzed by aminoacyl-tRNA synthetases are critical for the faithful protein synthesis by correcting misactivated amino acids and misaminoacylated tRNAs. We report that the isolated editing domain of leucyl-tRNA synthetase from the deep-rooted bacterium Aquifex aeolicus (alphabeta-LeuRS) catalyzes the hydrolytic editing of both mischarged tRNA(Leu) and minihelix(Leu). Wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 278 27 شماره
صفحات -
تاریخ انتشار 2003